Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In modern smart grids, accurate and synchronized time signals are essential for effective monitoring, protection, and control. Various time synchronization methods exist, each tailored to specific application needs. Widely adopted solutions, such as GPS, however, are vulnerable to challenges such as signal loss and cyber-attacks, underscoring the need for reliable backup or supplementary solutions. This paper examines the timing requirements across different power grid applications and provides a comprehensive review of available time synchronization mechanisms. Through a comparative analysis of timing methods based on accuracy, flexibility, reliability, and security, this study offers insights to guide the selection of optimal solutions for seamless grid integration.more » « lessFree, publicly-accessible full text available March 1, 2026
-
To accelerate progress toward the realization of advanced energy systems, this review explores the potential of pulsar technology to create a more stable, economical, and environmentally friendly energy infrastructure. Pulsars, with their precise and reliable timing characteristics, have emerged as a promising tool for enhancing energy systems. This review begins by examining the development history of pulsar technology, shedding light on its evolution and the milestones achieved. It then provides a comprehensive summary of the current state of research, highlighting recent advancements and breakthroughs in this field. It also explores transformative pulsar applications in energy systems, including improved grid stability, advanced energy synchronization, and efficient energy storage management. However, implementing pulsar-related technologies presents significant technical, economic, and operational challenges. This review examines these hurdles and proposes strategies to overcome them, emphasizing the need for innovation, interdisciplinary collaboration, and supportive policies to fully integrate pulsar technologies into sustainable energy systems.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Integrated sensing and communication has been identified as an enabling technology for forthcoming wireless networks. In an effort to achieve an improved performance trade-off between multiuser communications and radar sensing, this paper considers a dynamically-partitioned antenna array architecture for monostatic ISAC systems, in which each element of the array at the base station can function as either a transmit or receive antenna. To fully exploit the available spatial degrees of freedom for both communication and sensing functions, we jointly design the partitioning of the array between transmit and receive antennas together with the transmit beamforming in order to minimize the direction-of-arrival (DOA) estimation error, while satisfying constraints on the communication signal-to-interference-plusnoise ratio and the transmit power budget. An alternating algorithm based on Dinkelbach’s transform, the alternative direction method of multipliers, and majorization-minimization is developed to solve the resulting complicated optimization problem. To reduce the computational complexity, we also present a heuristic three-step strategy that optimizes the transmit beamforming after determining the antenna partitioning. Simulation results confirm the effectiveness of the proposed algorithms in significantly reducing the DOA estimation error.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Integrated sensing and communication (ISAC) is a key enabling technique for future wireless networks owing to its efficient hardware and spectrum utilization. In this paper, we focus on dual-functional waveform design for a multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) ISAC system, which is considered to be a promising solution for practical deployment. Since the dual-functional waveform carries communication information, its random nature leads to high range-Doppler sidelobes in the ambiguity function, which in turn degrades radar sensing performance. To suppress range- Doppler sidelobes, we propose a novel symbol-level precoding (SLP)-based waveform design for MIMO-OFDM ISAC systems by fully exploiting the available temporal degrees of freedom. Our goal is to minimize the range-Doppler integrated sidelobe level (ISL) while satisfying the constraints of target illumination power, multi-user communication quality of service (QoS), and constant-modulus transmission. To solve the resulting non-convex waveform design problem, we develop an efficient algorithm using the majorization-minimization (MM) and alternative direction method of multipliers (ADMM) methods. Simulation results show that the proposed waveform has significantly reduced range-Doppler sidelobes compared with signals designed only for communications and other baselines. In addition, the proposed waveform design achieves target detection and estimation performance close to that achievable by waveforms designed only for radar, which demonstrates the superiority of the proposed SLP-based ISAC approach.more » « lessFree, publicly-accessible full text available February 1, 2026
-
The distribution of dissolved iodine in seawater is sensitive to multiple biogeochemical cycles, including those of nitrogen and oxygen. The iodine-to-calcium ratio (I/Ca) of marine carbonates, such as bulk carbonate or foraminifera, has emerged as a potential proxy for changes in past seawater oxygenation. However, the utility of the I/Ca proxy in deep-sea corals, natural archives of seawater chemistry with wide spatial coverage and radiometric dating potential, remains unexplored. Here, we present the first I/Ca data obtained from modern deep-sea corals, specifically scleractinian and bamboo corals, collected from the Atlantic, Eastern Pacific, and Southern Oceans, encompassing a wide range of seawater oxygen concentrations (10–280 μmol/kg). In contrast to thermodynamic predictions, we observe higher I/Ca ratios in aragonitic corals (scleractinian) compared to calcitic corals (bamboo). This observation suggests a strong biological control during iodate incorporation into deep-sea coral skeletons. For the majority of scleractinian corals, I/Ca exhibits a covariation with local seawater iodate concentrations, which is closely related to seawater oxygen content. Scleractinian corals also exhibit notably lower I/Ca below a seawater oxygen threshold of approximately 160 μmol/kg. In contrast, no significant differences in I/Ca are found among bamboo corals across the range of oxygen concentrations encountered (15–240 μmol/kg). In the North Atlantic, several hydrographic factors, such as temperature and/or salinity, may additionally affect coral I/Ca. Our results highlight the potential of I/Ca ratios in deep-sea scleractinian corals to serve as an indicator of past seawater iodate concentrations, providing valuable insights into historical seawater oxygen levels.more » « less
-
In this paper, we investigate the integration of integrated sensing and communication (ISAC) and reconfigurable intelligent surfaces (RIS) for providing wide-coverage and ultrareliable communication and high-accuracy sensing functions. In particular, we consider an RIS-assisted ISAC system in which a multi-antenna base station (BS) simultaneously performs multiuser multi-input single-output (MU-MISO) communications and radar sensing with the assistance of an RIS. We focus on both target detection and parameter estimation performance in terms of the signal-to-noise ratio (SNR) and Cramér-Rao bound (CRB), respectively. Two optimization problems are formulated for maximizing the achievable sum-rate of the multi-user communications under an SNR constraint for target detection or a CRB constraint for parameter estimation, the transmit power budget, and the unit-modulus constraint of the RIS reflection coefficients. Efficient algorithms are developed to solve these two complicated non-convex problems. We then extend the proposed joint design algorithms to the scenario with imperfect self-interference cancellation. Extensive simulation results demonstrate the advantages of the proposed joint beamforming and reflection designs compared with other schemes. In addition, it is shown that more RIS reflection elements bring larger performance gains for directof- arrival (DoA) estimation than for target detection.more » « less
An official website of the United States government
